By Topic

Sliding Mechanism of Lateral Thermosonic Process With Anisotropic Conductive Film for High Productivity and High Reliability

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Chang-Wan Ha ; Dept. of Mech. Eng., Korea Adv. Inst. of Sci. & Technol., Daejeon, South Korea ; Kyung-Rok Kim ; Kyung-Soo Kim ; Soohyun Kim

In this paper, a thermosonic flip-chip bonding process using lateral ultrasonic vibration is proposed. To enhance the reliability of the specimen after the lateral thermosonic process, a sliding mechanism is adopted with investigation of equivalent stiffness of the anisotropic conductive film (ACF) joint. By a tensile test, it is shown that the equivalent stiffness of the ACF joint gradually increases as curing proceeds. Based on these results, the sliding point where the vibration amplitude of the chip specimen begins to decrease can be adjusted by the applied pressure. Thanks to the sliding mechanism, forced excitation to the sufficiently cured chip specimen can be naturally avoided. In addition, the robustness of the degree of cure against the bonding time variation can be improved in spite of the short bonding time. To demonstrate the feasibility of the proposed sliding mechanism in practice, experiments are conducted with a commercialized driver chip assembly of a liquid crystal display with an ACF.

Published in:

Components, Packaging and Manufacturing Technology, IEEE Transactions on  (Volume:3 ,  Issue: 2 )