By Topic

Direct Image Reconstruction for 3-D Electrical Resistance Tomography by Using the Factorization Method and Electrodes on a Single Plane

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Zhang Cao ; Sch. of Instrum. & Opto-Electron. Eng., Beihang Univ., Beijing, China ; Lijun Xu

A direct reconstruction method for three-dimensional (3-D) electrical resistance tomography was introduced by using the factorization method. Compared with the traditional image reconstruction algorithms based on the sensitivity/Jacobian matrix, the conductivity distribution in any part of the 3-D region of interest can be obtained directly and independently. A new way to calculate the Neumann-to-Dirichlet map was also introduced by using the adjacent current pattern. Several phantoms were constructed for image reconstruction in three dimensions. The data were collected from 16 electrodes on a single cross section, which can be only used to produce two-dimensional images in the literature. Neither matrix inversion nor iteration was used in the process of image reconstruction. The reconstructed results validated the feasibility of the method.

Published in:

Instrumentation and Measurement, IEEE Transactions on  (Volume:62 ,  Issue: 5 )