By Topic

Motion Parameter Optimization and Sensor Scheduling for the Sea-Wing Underwater Glider

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Jiancheng Yu ; State Key Laboratory of Robotics, Department of Underwater Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, China ; Fumin Zhang ; Aiqun Zhang ; Wenming Jin
more authors

Underwater gliders adjust buoyancy to generate gliding motion through water columns using a pair of wings. Various types of underwater gliders have been developed and have been tested as efficient long-distance, long-duration ocean sampling platforms. We introduce the Chinese Sea-Wing underwater glider and develop methods to increase its gliding range by optimizing the steady motion parameters to save energy. The methods are based on a model that relates gliding range to steady gliding motion parameters as well as energy consumption. A sensor scheduling strategy accounts for the distributed features of vertical profiles so that the sampling resolution is adjusted to reduce energy consumption of sensing. The effect of the proposed methods to increase gliding range is evaluated on the Sea-Wing glider. The proposed methods may be applicable to other types of underwater gliders.

Published in:

IEEE Journal of Oceanic Engineering  (Volume:38 ,  Issue: 2 )