By Topic

One-Port Resonance-Based Test Technique for RF Interconnect and Filters Embedded in RF Substrates

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Abhilash Goyal ; Microelectronics Group, Oracle (Sun Microsytems), Santa Clara, CA, USA ; Madhavan Swaminathan ; Abhijit Chatterjee

In this paper, a one-port test approach is proposed for testing radio frequency (RF) interconnects as well as RF passive filters embedded in RF substrates. The proposed technique relies on the use of an RF oscillator that is coupled to the embedded interconnect/filter via a probe card. Shifts in the RF oscillation frequency (referred to as resonance-based test) are used for defect detection, and are different from prior oscillation-based test techniques that configure the device under test itself into an oscillator. A core innovation is that the technique can detect defects in embedded passives/filters using only one-port probe access and eliminates the need of an external RF input test stimulus. Such one-port probing causes a shift in the oscillation frequency of the external oscillator because of the loading from the embedded RF passive circuit. To facilitate test response measurement, the output of the external RF oscillator (GHz signal) is down-converted to lower frequencies (MHz). The proposed test method is demonstrated through both simulations and measurements. Additionally, panel-level testing of RF substrates is illustrated.

Published in:

IEEE Transactions on Components, Packaging and Manufacturing Technology  (Volume:3 ,  Issue: 2 )