By Topic

Online Ensemble Learning Approach for Server Workload Prediction in Large Datacenters

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Nidhi Singh ; Int. Inst. of Inf. Technol. - Bangalore (IIIT-B), Bangalore, India ; Shrisha Rao

Growing scale of server infrastructure in large datacenters has led to an increased need for effective server workload prediction mechanisms. Two main challenges faced in server workload prediction task are lack of large-scale training data and changes in the underlying distribution of server workloads in events like change in dominant applications of servers or change in allocation of servers, etc. In this work, we propose an online server workload prediction approach based on ensemble learning which addresses these issues. We evaluate the proposed approach using real dataset of an enterprise data center and a synthetic dataset. Experimental results reveal that the proposed approach achieves accuracy of 87.8% on real dataset and 88.8% on synthetic dataset.

Published in:

Machine Learning and Applications (ICMLA), 2012 11th International Conference on  (Volume:2 )

Date of Conference:

12-15 Dec. 2012