Cart (Loading....) | Create Account
Close category search window
 

Estimating Software Effort Using an ANN Model Based on Use Case Points

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Nassif, A.B. ; Dept. of ECE, Western Univ. London, London, ON, Canada ; Capretz, L.F. ; Ho, D.

In this paper, we propose a novel Artificial Neural Network (ANN) to predict software effort from use case diagrams based on the Use Case Point (UCP) model. The inputs of this model are software size, productivity and complexity, while the output is the predicted software effort. A multiple linear regression model with three independent variables (same inputs of the ANN) and one dependent variable (effort) is also introduced. Our data repository contains 240 data points in which, 214 are industrial and 26 are educational projects. Both the regression and ANN models were trained using 168 data points and tested using 72 data points. The ANN model was evaluated using the MMER and PRED criteria against the regression model, as well as the UCP model that estimates effort from use cases. Results show that the ANN model is a competitive model with respect to other regression models and can be used as an alternative to predict software effort based on the UCP method.

Published in:

Machine Learning and Applications (ICMLA), 2012 11th International Conference on  (Volume:2 )

Date of Conference:

12-15 Dec. 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.