Scheduled System Maintenance:
On May 6th, system maintenance will take place from 8:00 AM - 12:00 PM ET (12:00 - 16:00 UTC). During this time, there may be intermittent impact on performance. We apologize for the inconvenience.
By Topic

Prognosis Based on Handling Drifts in Dynamical Environments: Application to a Wind Turbine Benchmark

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Chammas, A. ; Univ. Lille Nord de France, Lille, France ; Duviella, E. ; Leceouche, S.

In this paper, we present a prognosis architecture that allows the computation of the Remaining Useful Life (RUL) of a failing process. A process subject to an incipient fault experiments slowly developing degradation. Sensor measurements and Condition Monitoring (CM) data extracted from the system allow to follow up the process drift. The prognosis architecture we propose makes use of a dynamical clustering algorithm to model the data in a feature space. This algorithm uses a sliding window scheme on which the model is iteratively updated. Metrics applied on the parameters of this model are used to compute a drift severity indicator, which is also an indicator of the health of the system. The architecture for prognosis is applied on a benchmark of wind turbine. The used benchmark has been constructed to serve as a realistic wind turbine model. It was used in the context of a global scale fault diagnosis and fault tolerant control competition. The benchmark also proposed a drifting fault scenario that we used to test our approach.

Published in:

Machine Learning and Applications (ICMLA), 2012 11th International Conference on  (Volume:2 )

Date of Conference:

12-15 Dec. 2012