Cart (Loading....) | Create Account
Close category search window
 

Identification of Dynamic Parameters for a One-Axis Drag-Free Gradiometer

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Grynagier, A. ; Inst. of Flight Mech. & Control (iFR), Univ. of Stuttgart, Stuttgart, Germany ; Ziegler, T. ; Fichter, W.

A parametric estimation algorithm for a single-axis gradiometer is described. The most influential parameters are isolated and estimated; their bias and variance are discussed. Even though the system is closed-loop controlled, only plant parameters are estimated using an open-loop identification equation, which simplifies the identification procedure. The estimates are obtained using the method of instrumental variables (IV). The advantage of this method is that it remains bias-free even when the system states are correlated with the measurement noise. The problem is described in a one-dimensional frame, but it can be extended to the multivariate case if necessary. The estimated parameters are then used to reconstitute the closed-loop transfer function, which allows the input disturbance that caused the observed signal to be deduced. The estimation algorithm is applied to the laser interferometer space antenna (LISA) technology package, which is the scientific payload of the LISA Pathfinder spacecraft (SC), an ESA/NASA technology demonstrator to be launched in 2014. The analysis is operated on a simulated dataset produced with the mission end-to-end simulator (E2E) as well as with a simple linear simulator. The on-board software and hardware constraints are taken into account since they are important performance drivers. The results are detailed along with the experiment model.

Published in:

Aerospace and Electronic Systems, IEEE Transactions on  (Volume:49 ,  Issue: 1 )

Date of Publication:

Jan. 2013

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.