By Topic

Second-Order Markov Chain Based Multiple-Model Algorithm for Maneuvering Target Tracking

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Jian Lan ; Xi'an Jiaotong Univ., Xi'an, China ; Li, X.R. ; Jilkov, V.P. ; Chundi Mu

A multiple-model algorithm for maneuvering target tracking is proposed. It is referred to as a second-order Markov chain (SOMC)-based interacting multiple-model (SIMM) algorithm. The target maneuver process is modeled by a SOMC to incorporate more information. SIMM adopts a merging strategy similar to that of the interacting multiple-model (IMM) algorithm, except that the one-step model transition probabilities are updated based on the SOMC. A scheme is proposed to design the transition probabilities of the SOMC for target tracking. The performance of the proposed SIMM algorithm is evaluated via several scenarios for maneuvering target tracking. Simulation results demonstrate the effectiveness of SIMM compared with IMM, the second-order IMM (IMM2) algorithm, and the likely-model set (LMS) algorithm. It is shown that SIMM performs about the same as IMM2 but requires only n filters versus n2 filters in IMM2 for n models. The effectiveness and efficiency of combining SIMM and LMS for state estimation are also demonstrated in the simulation.

Published in:

Aerospace and Electronic Systems, IEEE Transactions on  (Volume:49 ,  Issue: 1 )