By Topic

Structured Sparse Error Coding for Face Recognition With Occlusion

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Xiao-Xin Li ; Dept. of Math., Sun Yat-Sen Univ., Guangzhou, China ; Dao-Qing Dai ; Xiao-Fei Zhang ; Chuan-Xian Ren

Face recognition with occlusion is common in the real world. Inspired by the works of structured sparse representation, we try to explore the structure of the error incurred by occlusion from two aspects: the error morphology and the error distribution. Since human beings recognize the occlusion mainly according to its region shape or profile without knowing accurately what the occlusion is, we argue that the shape of the occlusion is also an important feature. We propose a morphological graph model to describe the morphological structure of the error. Due to the uncertainty of the occlusion, the distribution of the error incurred by occlusion is also uncertain. However, we observe that the unoccluded part and the occluded part of the error measured by the correntropy induced metric follow the exponential distribution, respectively. Incorporating the two aspects of the error structure, we propose the structured sparse error coding for face recognition with occlusion. Our extensive experiments demonstrate that the proposed method is more stable and has higher breakdown point in dealing with the occlusion problems in face recognition as compared to the related state-of-the-art methods, especially for the extreme situation, such as the high level occlusion and the low feature dimension.

Published in:

Image Processing, IEEE Transactions on  (Volume:22 ,  Issue: 5 )
Biometrics Compendium, IEEE