By Topic

Local SNR considerations in decentralized CFAR detection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
A. Mathur ; Dept. of Electr. & Syst. Eng., Connecticut Univ., Storrs, CT, USA ; P. K. Willett

We consider the decentralized detection problem, involving N sensors and a central processor, in which the sensors transmit unquantized data to the fusion center. Assuming a homogeneous background for constant false-alarm rate (CFAR) analysis, we obtain the performances of the system for the Swerling I and Swerling III target models. We demonstrate that a simple nonparametric fusion rule at the central processor is sufficient for nearly optimum performance. The effect of the local signal-to-noise ratios (SNRs) on the performances of the optimum detector and two suboptimum detectors is also examined. Finally, we obtain a set of conditions, related to the SNRs, under which better performance may be obtained by using decentralized detection as compared with centralized detection

Published in:

IEEE Transactions on Aerospace and Electronic Systems  (Volume:34 ,  Issue: 1 )