By Topic

Detection of Seizure and Epilepsy Using Higher Order Statistics in the EMD Domain

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
S. M. Shafiul Alam ; Department of Electrical and Electronic Engineering, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh ; M. I. H. Bhuiyan

In this paper, a method using higher order statistical moments of EEG signals calculated in the empirical mode decomposition (EMD) domain is proposed for detecting seizure and epilepsy. The appropriateness of these moments in distinguishing the EEG signals is investigated through an extensive analysis in the EMD domain. An artificial neural network is employed as the classifier of the EEG signals wherein these moments are used as features. The performance of the proposed method is studied using a publicly available benchmark database for various classification cases that include healthy, interictal (seizure-free interval) and ictal (seizure), healthy and seizure, nonseizure and seizure, and interictal and ictal, and compared with that of several recent methods based on time-frequency analysis and statistical moments. It is shown that the proposed method can provide, in almost all the cases, 100% accuracy, sensitivity, and specificity, especially in the case of discriminating seizure activities from the nonseizure ones for patients with epilepsy while being much faster as compared to the time-frequency analysis-based techniques.

Published in:

IEEE Journal of Biomedical and Health Informatics  (Volume:17 ,  Issue: 2 )