By Topic

High Electron Velocity Submicrometer AlN/GaN MOS-HEMTs on Freestanding GaN Substrates

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

The purchase and pricing options are temporarily unavailable. Please try again later.
13 Author(s)
David J. Meyer ; U.S. Naval Research Laboratory, Washington, DC, USA ; David A. Deen ; David F. Storm ; Mario G. Ancona
more authors

AlN/GaN heterostructures with 1700-cm2/V·s Hall mobility have been grown by molecular beam epitaxy on freestanding GaN substrates. Submicrometer gate-length (LG) metal-oxide-semiconductor (MOS) high-electron-mobility transistors (HEMTs) fabricated from this material show excellent dc and RF performance. LG = 100 nm devices exhibited a drain current density of 1.5 A/mm, current gain cutoff frequency fT of 165 GHz, a maximum frequency of oscillation fmax of 171 GHz, and intrinsic average electron velocity ve of 1.5 ×107 cm/s. The 40-GHz load-pull measurements of LG = 140 nm devices showed 1-W/mm output power, with a 4.6-dB gain and 17% power-added efficiency. GaN substrates provide a way of achieving high mobility, high ve, and high RF performance in AlN/GaN transistors.

Published in:

IEEE Electron Device Letters  (Volume:34 ,  Issue: 2 )