By Topic

A Batteryless 19 \mu W MICS/ISM-Band Energy Harvesting Body Sensor Node SoC for ExG Applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

13 Author(s)
Yanqing Zhang ; Univ. of Virginia, Charlottesville, VA, USA ; Fan Zhang ; Shakhsheer, Y. ; Silver, J.D.
more authors

This paper presents an ultra-low power batteryless energy harvesting body sensor node (BSN) SoC fabricated in a commercial 130 nm CMOS technology capable of acquiring, processing, and transmitting electrocardiogram (ECG), electromyogram (EMG), and electroencephalogram (EEG) data. This SoC utilizes recent advances in energy harvesting, dynamic power management, low voltage boost circuits, bio-signal front-ends, subthreshold processing, and RF transmitter circuit topologies. The SoC is designed so the integration and interaction of circuit blocks accomplish an integrated, flexible, and reconfigurable wireless BSN SoC capable of autonomous power management and operation from harvested power, thus prolonging the node lifetime indefinitely. The chip performs ECG heart rate extraction and atrial fibrillation detection while only consuming 19 μW, running solely on harvested energy. This chip is the first wireless BSN powered solely from a thermoelectric harvester and/or RF power and has lower power, lower minimum supply voltage (30 mV), and more complete system integration than previously reported wireless BSN SoCs.

Published in:

Solid-State Circuits, IEEE Journal of  (Volume:48 ,  Issue: 1 )