Cart (Loading....) | Create Account
Close category search window
 

Multicore Magnetic Nanoparticles for Magnetic Particle Imaging

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Eberbeck, D. ; Phys.-Tech. Bundesanstalt, Berlin, Germany ; Dennis, C.L. ; Huls, N.F. ; Krycka, K.L.
more authors

Biocompatible magnetic nanoparticles are interesting tracers for diagnostic imaging techniques, including magnetic resonance imaging and magnetic particle imaging (MPI). Here, we will present our studies of the physical and especially magnetic properties of dextran coated multicore magnetic iron oxide nanoparticles, with promising high MPI signals revealed by magnetic particle spectroscopy (MPS) measurements. The Nanomag-MIP particles with a hydrodynamic diameter of 106 nm show an increase of the MPS amplitude by a factor of about two at the 3rd harmonic, as compared to Resovist. In particular, the signal improves progressively with the order of the harmonic, a prerequisite for better spatial resolution. To understand this behavior, we investigated the samples using quasistatic magnetization measurements yielding bimodal size distributions for both systems, and magnetorelaxometry providing the mean effective anisotropy constant. The mean effective magnetic diameter of the dominant larger size mode is 19 nm with a dispersion parameter of σ = 0.3 for Nanomag-MIP, and 22 nm with σ = 0.25 for Resovist. However, about 80% of the magnetic nanoparticles of Nanomag-MIP belong to this larger size mode whereas in Resovist only 30% do. The remaining Resovist particles are in the range of 5 nm, and, in practice, do not contribute to the MPI signal.

Published in:

Magnetics, IEEE Transactions on  (Volume:49 ,  Issue: 1 )

Date of Publication:

Jan. 2013

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.