Cart (Loading....) | Create Account
Close category search window

Secure and Lightweight Network Admission and Transmission Protocol for Body Sensor Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Daojing He ; Zhejiang Provincial Key Lab. of Service Robot, Zhejiang Univ., Hangzhou, China ; Chun Chen ; Chan, S. ; Jiajun Bu
more authors

A body sensor network (BSN) is a wireless network of biosensors and a local processing unit, which is commonly referred to as the personal wireless hub (PWH). Personal health information (PHI) is collected by biosensors and delivered to the PWH before it is forwarded to the remote healthcare center for further processing. In a BSN, it is critical to only admit eligible biosensors and PWH into the network. Also, securing the transmission from each biosensor to PWH is essential not only for ensuring safety of PHI delivery, but also for preserving the privacy of PHI. In this paper, we present the design, implementation, and evaluation of a secure network admission and transmission subsystem based on a polynomial-based authentication scheme. The procedures in this subsystem to establish keys for each biosensor are communication efficient and energy efficient. Moreover, based on the observation that an adversary eavesdropping in a BSN faces inevitable channel errors, we propose to exploit the adversary's uncertainty regarding the PHI transmission to update the individual key dynamically and improve key secrecy. In addition to the theoretical analysis that demonstrates the security properties of our system, this paper also reports the experimental results of the proposed protocol on resource-limited sensor platforms, which show the efficiency of our system in practice.

Published in:

Biomedical and Health Informatics, IEEE Journal of  (Volume:17 ,  Issue: 3 )

Date of Publication:

May 2013

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.