By Topic

Recognizing Textual Entailment with a Semantic Edit Distance Metric

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Rios, M. ; Res. Group in Comput. Linguistics, Univ. of Wolverhampton, Wolverhampton, UK ; Gelbukh, A.

We present a Recognizing Textual Entailment(RTE) system based on different similarity metrics. The metrics used are string-based metrics and the Semantic Edit Distance Metric, which is proposed in this paper to address limitations of known semantic-based metrics and to support the decisions made by a simple method based on lexical similarity metrics.We add the scores of the metrics as features for a machine learning algorithm. The performance of our system is comparable with the average performance of the Recognizing Textual Entailment Challenges, though lower than that of the state-of-the-art methods.

Published in:

Artificial Intelligence (MICAI), 2012 11th Mexican International Conference on

Date of Conference:

Oct. 27 2012-Nov. 4 2012