By Topic

Improving Fault Ride-Through Capability of DFIG-Based Wind Turbine Using Superconducting Fault Current Limiter

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Elshiekh, M.E. ; Dept. of Electr. Power & Machines Eng., Tanta Univ., Tanta, Egypt ; Mansour, D.A. ; Azmy, A.M.

With increased penetration of wind energy as a renewable energy source, there is a need to keep wind turbines connected to the grid during different disturbances such as grid faults. In this paper, the use of superconducting fault current limiter (SFCL) is proposed to reduce fault current level at the stator side and improve the fault ride-through (FRT) capability of the system. To highlight the proposed technique, a doubly fed induction generator (DFIG) is considered as a wind-turbine generator, where the whole system is simulated using PSCAD/EMTDC software. Detailed simulation results are obtained with and without SFCL considering stator and rotor currents. In addition, the voltage profile at the generator terminals is analyzed. The effect of limiting resistance value is also investigated. The obtained results ensure that the SFCL is effective in decreasing the fault current. Moreover, both the voltage dip at the generator terminals and the reactive power consumption from the grid are decreased during the fault. The voltage dip characteristics are discussed in accordance with international grid codes for wind turbines.

Published in:

Applied Superconductivity, IEEE Transactions on  (Volume:23 ,  Issue: 3 )