By Topic

Softcore Processor Optimization According to Real-Application Requirements

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Bertrand Le Gal ; IMS Laboratory, University of Bordeaux, Talence, France ; Christophe Jego

Nowadays, embedded processor cores are integrated into most system-on-chip (SoC). Processor cores can be designed to be dedicated for an SoC. However, reusing of generic processors is often preferred due to time to market constraint. Such processors have drawbacks in terms of hardware complexity and power consumption. Indeed, some of their instructions and hardware resources are useless. These area and energy inefficiencies are problematic for low-cost and low-energy systems. In this paper, we propose a methodology for automatically reducing processor functionalities and the resulting hardware complexity according to real-application requirements. This approach was evaluated on two open-source processor cores. The results show that the average area and power consumption savings are over 20% on both application-specific integrated circuit (ASIC) and field-programmable gate array (FPGA) technologies.

Published in:

IEEE Embedded Systems Letters  (Volume:5 ,  Issue: 1 )