By Topic

Microplasma enhancement via the formation of a graphite-like phase on diamond cathodes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

The purchase and pricing options are temporarily unavailable. Please try again later.
9 Author(s)
Chen, Huang-Chin ; Department of Physics, Tamkang University, Tamsui, New Taipei 251, Taiwan ; Lin, I-Nan ; Lou, Shiu-Cheng ; Chen, Chulung
more authors

Your organization might have access to this article on the publisher's site. To check, click on this link:http://dx.doi.org/+10.1116/1.4769373 

Enhanced electron field emission (EFE) properties in microcrystalline diamond (MCD) films that have been Fe-coated and postannealed are observed. Additionally, improved microplasma characteristics are also observed when these materials are used as cathodes. The turn-on field for inducing the EFE process decreases from 4.7 V/μm for pristine MCD films to 2.2 V/μm for the Fe-coated/postannealed ones, whereas the EFE current density at an applied field of 8.8 V/μm increases from 36.5 to 5327.1 μA/cm2. Transmission electron microscopy, in conjunction with high-angle annular dark field and 3D-tomography studies, reveals that enhanced EFE in the Fe-coated/postannealed MCD films is due to the graphite-like phase on the surface of diamond films. The authors infer that the Fe-coating interacts with the diamond in the postannealing process to dissolve carbons and reprecipitate them in nanographite networks. This process is similar to the formation of carbon nanotubes by the dissolution and reprecipitation of carbon species at the presence of nanosized Fe catalysts. The utilization of high EFE diamond films as cathode materials enhances the microplasma, as the ignition field for initiating the plasma is lowered and a high plasma current density is attainable.

Published in:

Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures  (Volume:31 ,  Issue: 2 )