We are currently experiencing intermittent issues impacting performance. We apologize for the inconvenience.
By Topic

Anti-Jamming Message-Driven Frequency Hopping—Part I: System Design

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Lei Zhang ; Marvell Semicond. Inc., Santa Clara, CA, USA ; Huahui Wang ; Tongtong Li

This is Part I of a two-part paper that considers anti-jamming system design in wireless networks based on message-driven frequency hopping (MDFH), a highly efficient spread spectrum technique. In this paper, we first analyze the performance of MDFH under hostile jamming. It is observed that while MDFH is robust under strong jamming, it experiences considerable performance losses under disguised jamming from sources that mimic the true signal. To overcome this limitation, we propose an anti-jamming MDFH (AJ-MDFH) system. The main idea is to transmit a secure ID sequence along with the information stream. The ID sequence is generated through a cryptographic algorithm using the shared secret between the transmitter and the receiver, it is then exploited by the receiver for effective signal extraction. It is shown that AJ-MDFH can effectively reduce the performance degradation caused by disguised jamming, and is also robust under strong jamming. In addition, we extend AJ-MDFH to the multi-carrier case, which can increase the system efficiency and jamming resistance significantly through jamming randomization and frequency diversity, and can readily be used as a collision-free multiple access system. Part II of the paper focuses on the capacity analysis of MDFH and AJ-MDFH under disguised jamming.

Published in:

Wireless Communications, IEEE Transactions on  (Volume:12 ,  Issue: 1 )