By Topic

Tradeoffs Between Impurity Gettering, Bulk Degradation, and Surface Passivation of Boron-Rich Layers on Silicon Solar Cells

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Sieu Pheng Phang ; Res. Sch. of Eng., Australian Nat. Univ., Canberra, ACT, Australia ; Wensheng Liang ; Wolpensinger, B. ; Kessler, M.A.
more authors

The suitability of using a boron-rich layer (BRL) formed during boron diffusion as a gettering layer for n-type silicon solar cells is investigated. We have studied the gettering effectiveness, generation of dislocations and associated bulk lifetime degradation, and the impact of the BRL on the saturation current density, for different thickness of BRL and postoxidation conditions. Our results show that a BRL deposited using BBr3-based furnaces is very effective at gettering interstitial Fe, removing more than 99.9% of Fe, but that the gettered Fe is released back into the wafer when the BRL is oxidized thermally. While we have detected no significant bulk degradation due to dislocations for the diffusion conditions used, there remains a tradeoff between the gettering effect and the recombination in the boron-doped region. Although the BRL can be oxidized chemically at low temperature using boiling nitric acid without losing the gettering effect, the lowest saturation current density is obtained by means of thermal oxidation, thanks partly to a lower boron surface concentration in thermally oxidized samples.

Published in:

Photovoltaics, IEEE Journal of  (Volume:3 ,  Issue: 1 )