Cart (Loading....) | Create Account
Close category search window
 

A Self-Learning Approach to Single Image Super-Resolution

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Min-Chun Yang ; Dept. of Comput. Sci. & Inf. Eng., Nat. Taiwan Univ., Taipei, Taiwan ; Wang, Y.-C.F.

Learning-based approaches for image super-resolution (SR) have attracted the attention from researchers in the past few years. In this paper, we present a novel self-learning approach for SR. In our proposed framework, we advance support vector regression (SVR) with image sparse representation, which offers excellent generalization in modeling the relationship between images and their associated SR versions. Unlike most prior SR methods, our proposed framework does not require the collection of training low and high-resolution image data in advance, and we do not assume the reoccurrence (or self-similarity) of image patches within an image or across image scales. With theoretical supports of Bayes decision theory, we verify that our SR framework learns and selects the optimal SVR model when producing an SR image, which results in the minimum SR reconstruction error. We evaluate our method on a variety of images, and obtain very promising SR results. In most cases, our method quantitatively and qualitatively outperforms bicubic interpolation and state-of-the-art learning-based SR approaches.

Published in:

Multimedia, IEEE Transactions on  (Volume:15 ,  Issue: 3 )

Date of Publication:

April 2013

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.