By Topic

Large Deviation Bounds for Decision Trees and Sampling Lower Bounds for AC0-Circuits

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Beck, C. ; Princeton Univ., Princeton, NJ, USA ; Impagliazzo, R. ; Lovett, S.

There has been considerable interest lately in the complexity of distributions. Recently, Lovett and Viola (CCC 2011) showed that the statistical distance between a uniform distribution over a good code, and any distribution which can be efficiently sampled by a small bounded-depth AC0 circuit, is inverse-polynomially close to one. That is, such distributions are very far from each other. We strengthen their result, and show that the distance is in fact exponentially close to one. This allows us to strengthen the parameters in their application for data structure lower bounds for succinct data structures for codes. From a technical point of view, we develop new large deviation bounds for functions computed by small depth decision trees, which we then apply to obtain bounds for AC0 circuits via the switching lemma. We show that if such functions are Lipschitz on average in a certain sense, then they are in fact Lipschitz almost everywhere. This type of result falls into the extensive line of research which studies large deviation bounds for the sum of random variables, where while not independent, exhibit large deviation bounds similar to these obtained by independent random variables.

Published in:

Foundations of Computer Science (FOCS), 2012 IEEE 53rd Annual Symposium on

Date of Conference:

20-23 Oct. 2012