By Topic

Combinatorial Coloring of 3-Colorable Graphs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Kawarabayashi, K. ; Nat. Inst. of Inf., Tokyo, Japan ; Thorup, M.

We consider the problem of coloring a 3-colorable graph in polynomial time using as few colors as possible. We present a combinatorial algorithm getting down to Õ(n4/11) colors. This is the first combinatorial improvement of Blum's Õ(n3/8) bound from FOCS'90. Like Blum's algorithm, our new algorithm composes nicely with recent semi-definite programming approaches. The current best bound is Õ(n0.2072) colors by Chlamtac from FOCS'07. We now bring it down to Õ(n0. 2049) colors.

Published in:

Foundations of Computer Science (FOCS), 2012 IEEE 53rd Annual Symposium on

Date of Conference:

20-23 Oct. 2012