By Topic

Fault Detection and Isolation Filters for Three-Phase AC-DC Power Electronics Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Ding, X. ; ECE Department of the University of Illinois at Urbana-Champaign, Urbana, IL, USA ; Poon, J. ; Celanovic, I. ; Dominguez-Garcia, A.D.

This paper develops and experimentally demonstrates a new class of high-fidelity model-based fault detection and isolation filters for three-phase AC-DC power electronics systems. The structure of these filters is similar to that of a piecewise linear observer and in the absence of faults the filter residual converges to zero. On the other hand, whenever a fault occurs, by appropriately choosing the filter gain, the filter residual will exhibit certain geometric characteristics that allow the fault to be detected and, in certain cases, also isolated. Key advantages of these filters include fast detection of all possible component faults and the ability to capture slow degradation in individual components. In order to experimentally demonstrate their feasibility, the filters are implemented on an ultra-fast application-specific real-time processor. While the theoretical framework developed is general, the analysis, simulations, and experiments are focused on widely used power electronics systems implementing three-phase AC-DC converters that are used in, e.g., motor drive applications and distributed static compensators.

Published in:

Circuits and Systems I: Regular Papers, IEEE Transactions on  (Volume:60 ,  Issue: 4 )