By Topic

Fault Diagnosis of Steam Turbine-Generator Sets Using an EPSO-Based Support Vector Classifier

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Huo-Ching Sun ; Dept. of Electr. Eng., Cheng Shiu Univ., Kaohsiung, Taiwan ; Chao-Ming Huang ; Yann-Chang Huang

This paper proposes an enhanced particle swarm optimization (EPSO)-based support vector classifier (SVC) that extracts the support vector from databases, in order to diagnose vibration faults in steam turbine-generator sets (STGS). SVC has been successfully applied to the classification of data with linear or nonlinear features, because it allows generalization. However, the design of the best SVC model for the acquisition of the best hyperplane is often difficult and depends heavily on the operators' experience or on trial-and-error experiments. In this paper, an EPSO algorithm is used to automatically tune the control parameters of an SVC. Since EPSO is an excellent optimization tool, it is easily sufficient for the design of an optimal SVC model. The proposed approach is applied to an STGS, to test its diagnostic accuracy. The test results demonstrate that the proposed EPSO-based SVC method has a higher diagnostic accuracy and a shorter learning time than classical neural network-based methods. This study also provides advice on handling a loss of data features for unknown reasons.

Published in:

Energy Conversion, IEEE Transactions on  (Volume:28 ,  Issue: 1 )