By Topic

Ring Amplifiers for Switched Capacitor Circuits

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Hershberg, B. ; Oregon State Univ., Corvallis, OR, USA ; Weaver, S. ; Sobue, K. ; Takeuchi, S.
more authors

In this paper the fundamental concept of ring amplification is introduced and explored. Ring amplifiers enable efficient amplification in scaled environments, and possess the benefits of efficient slew-based charging, rapid stabilization, compression-immunity (inherent rail-to-rail output swing), and performance that scales with process technology. A basic operational theory is established, and the core benefits of this technique are identified. Measured results from two separate ring amplifier based pipelined ADCs are presented. The first prototype IC, a simple 10.5-bit, 61.5 dB SNDR pipelined ADC which uses only ring amplifiers, is used to demonstrate the core benefits. The second fabricated IC presented is a high-resolution pipelined ADC which employs the technique of Split-CLS to perform efficient, accurate amplification aided by ring amplifiers. The 15-bit ADC is implemented in a 0.18 μm CMOS technology and achieves 76.8 dB SNDR and 95.4 dB SFDR at 20 Msps while consuming 5.1 mW, achieving a FoM of 45 fJ/conversion-step.

Published in:

Solid-State Circuits, IEEE Journal of  (Volume:47 ,  Issue: 12 )