By Topic

Stability of feedback systems using dual Nyquist diagram

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Paul Jones ; Research Engineer, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California

This paper introduces a procedure for determing the stability of a feedback system using a dual Nyquist diagram. Such a diagram results when the characteristic equation of the system is interpreted to be the sum of two frequency-dependent functions F1(p) + F2(p) instead of the normal expression 1 + G(p)H(p). This diagram then consists of two polar plots; one plot represents the locus of one of the functions which is contained in the characteristic equation, and the other plot is the negative locus of the other function contained in the characteristic equation. Each of these curves may, if desired, be considered as an individual Nyquist diagram.

Published in:

IRE Transactions on Circuit Theory  (Volume:1 ,  Issue: 1 )