Cart (Loading....) | Create Account
Close category search window
 

Toward a 1.54 \mu m Electrically Driven Erbium-Doped Silicon Slot Waveguide and Optical Amplifier

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

13 Author(s)
Tengattini, A. ; Dept. of Phys., Univ. of Trento, Povo, Italy ; Gandolfi, D. ; Prtljaga, N. ; Anopchenko, A.
more authors

In this paper, we report on the first attempt to design, fabricate, and test an on-chip optical amplifier which works at 1540 nm and can be electrically driven. It is based on an asymmetric silicon slot waveguide which embeds the active material. This is based on erbium-doped silicon rich silicon oxide. We describe the horizontal asymmetric slot waveguide design which allows us to get a high field confinement in a nanometer thick active layer. In addition, we detail the complex process needed to fabricate the structure. The waveguides have been characterized both electrically as well as optically. Electroluminescence can be excited by hot carrier injection, due to impact excitation of the Er ions. Propagation losses have been measured and high values have been found due to processing defects. Pump and probe measurements show a voltage dependent strong attenuation of the probe signal due to free carrier accumulation and absorption in the slot waveguide region. At the maximum electrical pumping level, electroluminescence signal is in the range of tens of μW/cm 2 and the overall loss of the device is only -6 dB. Despite not demonstrating optical amplification, this study shines some light on the path to achieve an all-silicon electrically driven optical amplifier.

Published in:

Lightwave Technology, Journal of  (Volume:31 ,  Issue: 3 )

Date of Publication:

Feb.1, 2013

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.