By Topic

CMOS-3D Smart Imager Architectures for Feature Detection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Suarez, M. ; Centro de Investig. en Tecnol. de la Informacion (CITIUS), Univ. of Santiago de Compostela, Santiago de Compostela, Spain ; Brea, V.M. ; Fernandez-Berni, J. ; Carmona-Galan, R.
more authors

This paper reports a multi-layered smart image sensor architecture for feature extraction based on detection of interest points. The architecture is conceived for 3-D integrated circuit technologies consisting of two layers (tiers) plus memory. The top tier includes sensing and processing circuitry aimed to perform Gaussian filtering and generate Gaussian pyramids in fully concurrent way. The circuitry in this tier operates in mixed-signal domain. It embeds in-pixel correlated double sampling, a switched-capacitor network for Gaussian pyramid generation, analog memories and a comparator for in-pixel analog-to-digital conversion. This tier can be further split into two for improved resolution; one containing the sensors and another containing a capacitor per sensor plus the mixed-signal processing circuitry. Regarding the bottom tier, it embeds digital circuitry entitled for the calculation of Harris, Hessian, and difference-of-Gaussian detectors. The overall system can hence be configured by the user to detect interest points by using the algorithm out of these three better suited to practical applications. The paper describes the different kind of algorithms featured and the circuitry employed at top and bottom tiers. The Gaussian pyramid is implemented with a switched-capacitor network in less than 50 μs, outperforming more conventional solutions.

Published in:

Emerging and Selected Topics in Circuits and Systems, IEEE Journal on  (Volume:2 ,  Issue: 4 )