By Topic

Mixture Subclass Discriminant Analysis Link to Restricted Gaussian Model and Other Generalizations

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Nikolaos Gkalelis ; Information Technologies Institute/Centre for Research and Technology Hellas (CERTH), Thermi, Greece ; Vasileios Mezaris ; Ioannis Kompatsiaris ; Tania Stathaki

In this paper, a theoretical link between mixture subclass discriminant analysis (MSDA) and a restricted Gaussian model is first presented. Then, two further discriminant analysis (DA) methods, i.e., fractional step MSDA (FSMSDA) and kernel MSDA (KMSDA) are proposed. Linking MSDA to an appropriate Gaussian model allows the derivation of a new DA method under the expectation maximization (EM) framework (EM-MSDA), which simultaneously derives the discriminant subspace and the maximum likelihood estimates. The two other proposed methods generalize MSDA in order to solve problems inherited from conventional DA. FSMSDA solves the subclass separation problem, that is, the situation in which the dimensionality of the discriminant subspace is strictly smaller than the rank of the inter-between-subclass scatter matrix. This is done by an appropriate weighting scheme and the utilization of an iterative algorithm for preserving useful discriminant directions. On the other hand, KMSDA uses the kernel trick to separate data with nonlinearly separable subclass structure. Extensive experimentation shows that the proposed methods outperform conventional MSDA and other linear discriminant analysis variants.

Published in:

IEEE Transactions on Neural Networks and Learning Systems  (Volume:24 ,  Issue: 1 )