By Topic

Challenges and Opportunities for State Tracking in Statistical Spoken Dialog Systems: Results From Two Public Deployments

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Williams, J.D. ; Microsoft Res., Microsoft Corp., Redmond, WA, USA

Whereas traditional dialog systems operate on the top ASR hypothesis, statistical dialog systems claim to be more robust to ASR errors by maintaining a distribution over multiple hidden dialog states. Recently, these techniques have been deployed publicly for the first time, making empirical measurements possible. In this paper, we analyze two of these deployments. We find that performance was quite mixed: in some cases statistical techniques improved accuracy with respect to the top speech recognition hypothesis; in other cases, accuracy was degraded. Investigating degradations, we find the three main causes are (non-obviously) inaccurate parameter estimates, poor confidence scores, and correlations in speech recognition errors. Overall the results suggest fundamental weaknesses in the formulation as a generative model, and we suggest alternatives as future work.

Published in:

Selected Topics in Signal Processing, IEEE Journal of  (Volume:6 ,  Issue: 8 )