By Topic

New Approaches for Carbon Nanotubes-Based Biosensors and Their Application to Cell Culture Monitoring

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Cristina Boero ; Ècole Polytechnique Fédérale de Lausanne, Integrated Systems Laboratory, Switzerland ; Jacopo Olivo ; Giovanni De Micheli ; Sandro Carrara

Amperometric biosensors are complex systems and they require a combination of technologies for their development. The aim of the present work is to propose a new approach in order to develop nanostructured biosensors for the real-time detection of multiple metabolites in cell culture flasks. The fabrication of five Au working electrodes onto silicon substrate is achieved with CMOS compatible microtechnology. Each working electrode presents an area of 0.25 mm2, so structuration with carbon nanotubes and specific functionalization are carried out by using spotting technology, originally developed for microarrays and DNA printing. The electrodes are characterized by cyclic voltammetry and compared with commercially available screen-printed electrodes. Measurements are carried out under flow conditions, so a simple fluidic system is developed to guarantee a continuous flow next to the electrodes. The working electrodes are functionalized with different enzymes and calibrated for the real-time detection of glucose, lactate, and glutamate. Finally, some tests are performed on surnatant conditioned medium sampled from neuroblastoma cells (NG-108 cell line) to detect glucose and lactate concentration after 72 hours of cultivation. The developed biosensor for real-time and online detection of multiple metabolites shows very promising results towards circuits and systems for cell culture monitoring.

Published in:

IEEE Transactions on Biomedical Circuits and Systems  (Volume:6 ,  Issue: 5 )