By Topic

Analog-to-Information and the Nyquist Folding Receiver

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Ray Maleh ; Mission Integration Division, L-3 Communications Integrated Systems, Greenville, TX, USA ; Gerald L. Fudge ; Frank A. Boyle ; Phillip E. Pace

Recovering even a small amount of information from a broadband radio frequency (RF) environment using conventional analog-to-digital converter (ADC) technology is computationally complex and presents significant challenges. For sparse or compressible RF environments, an alternate approach to conventional sampling is analog-to-information (A2I) to enable sub-Nyquist rate sampling based on compressive sensing (CS) principles. This paper presents the Nyquist Folding Receiver (NYFR), an efficient A2I architecture that folds the broadband RF input prior to digitization by a narrowband ADC. The folding is achieved by undersampling the RF spectrum with a stream of short pulses that have a phase modulated sampling period. The undersampled signals then fold down into a low pass interpolation filter. The pulse sample time modulation induces a corresponding phase modulation on the received signals that is scaled by an integer modulation index that varies with the Nyquist zone (i.e., fold number), allowing the signals to be separated based on the measured modulation index. Unlike many schemes motivated by CS that randomize the RF prior to digitization, the NYFR substantially preserves signal structure. This enables information recovery with very low computational complexity algorithms in addition to traditional CS reconstruction techniques. The paper includes a comparison of seven other A2I architectures with the NYFR.

Published in:

IEEE Journal on Emerging and Selected Topics in Circuits and Systems  (Volume:2 ,  Issue: 3 )