By Topic

Price-Based Joint Beamforming and Spectrum Management in Multi-Antenna Cognitive Radio Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Nguyen, D.N. ; Dept. of Electr. & Comput. Eng., Univ. of Arizona, Tucson, AZ, USA ; Krunz, M.

We consider the problem of maximizing the throughput of a multi-antenna cognitive radio (CR) network. With spatial multiplexing over each frequency band, a multi-antenna CR node controls its antenna radiation directions and allocates power for each data stream by appropriately adjusting its precoding matrix. Our objective is to design a set of precoding matrices (one per band) at each CR node so that power and spectrum are optimally allocated for the node and its interference is steered away from unintended receivers. The problem is non-convex, with the number of variables growing quadratically with the number of antenna elements. To tackle it, we translate it into a noncooperative game. We derive an optimal pricing policy for each node, which adapts to the node's neighboring conditions and drives the game to a Nash-Equilibrium (NE). The network throughput under this NE equals to that of a locally optimal solution of the non-convex centralized problem. To find the set of precoding matrices at each node (best response), we develop a low-complexity distributed algorithm by exploiting the strong duality of the convex per-user optimization problem. The number of variables in the distributed algorithm is independent of the number of antenna elements. A centralized (cooperative) algorithm is also developed. Simulations show that the network throughput under the distributed algorithm rapidly converges to that of the centralized one. Finally, we develop a MAC protocol that implements our resource allocation and beamforming scheme. Extensive simulations show that the proposed protocol dramatically improves the network throughput and reduces power consumption.

Published in:

Selected Areas in Communications, IEEE Journal on  (Volume:30 ,  Issue: 11 )