By Topic

A Steady-State Analysis Method for a Modular Multilevel Converter

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

The purchase and pricing options are temporarily unavailable. Please try again later.
6 Author(s)
Qiang Song ; Dept. of Electr. Eng., Tsinghua Univ., Beijing, China ; Wenhua Liu ; Xiaoqian Li ; Hong Rao
more authors

Modular multilevel converters (MMC) are considered a top converter alternative for voltage-source converter (VSC) high-voltage, direct current (HVDC) applications. Main circuit design and converter performance evaluation are always important issues to consider before installing a VSC-HVDC system. Investigation into a steady-state analysis method for an MMC-based VSC-HVDC system is necessary. This paper finds a circular interaction among the electrical quantities in an MMC. Through this circular interaction, a key equation can be established to solve the unknown circulating current. A new steady-state model is developed to simply and accurately describe the explicit analytical expressions for various voltage and current quantities in an MMC. The accuracy of the expressions is improved by the consideration of the circulating current when deriving all the analytical expressions. The model's simplicity is demonstrated by having only one key equation to solve. Based on the analytical expressions for the arm voltages, the equivalent circuits for MMC are proposed to improve the current understanding of the operation of MMC. The feasibility and accuracy of the proposed method are verified by comparing its results with the simulation and experimental results.

Published in:

Power Electronics, IEEE Transactions on  (Volume:28 ,  Issue: 8 )