By Topic

Stability of Silicon Microelectromechanical Systems Resonant Thermometers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Ng, E.J. ; Dept. of Mech. Eng., Stanford, CA, USA ; Hyung Kyu Lee ; Chae Hyuck Ahn ; Melamud, R.
more authors

The frequency stability of single-crystal silicon microelectromechanical systems resonators encapsulated with epitaxial polysilicon (epi-seal) is investigated. As silicon resonators have significant temperature dependence, the inherent frequency stability of the resonators is masked by temperature-induced noise. Using two resonators side-by-side and assuming identical temperatures and fluctuations, temperature effects are eliminated, resulting in the two resonators tracking each other within ±10 ppb, or 3 × 10-4 °C, over a month. Power and thermal cycling the resonators produced no observable effects on the resonant frequency. This result indicates that silicon resonators make excellent on-chip thermometers, or high stability timing references if temperature is compensated well.

Published in:

Sensors Journal, IEEE  (Volume:13 ,  Issue: 3 )