By Topic

Digital-Assisted Asynchronous Compressive Sensing Front-End

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Jun Zhou ; Dept. of Electr. & Comput. Eng., Texas A&M Univ., College Station, TX, USA ; Mario Ramirez ; Samuel Palermo ; Sebastian Hoyos

Compressive sensing (CS) is a promising technique that enables sub-Nyquist sampling, while still guaranteeing the reliable signal recovery. However, existing mixed-signal CS front-end implementation schemes often suffer from high power consumption and nonlinearity. This paper presents a digital-assisted asynchronous compressive sensing (DACS) front-end which offers lower power and higher reconstruction performance relative to the conventional CS-based approaches. The front-end architecture leverages a continuous-time ternary encoding scheme which modulates amplitude variation to ternary timing information. Power is optimized by employing digital-assisted modules in the front-end circuit and a part-time operation strategy for high-power modules. An S-member Group-based Total Variation (S -GTV) algorithm is proposed for the sparse reconstruction of piecewise-constant signals. By including both the inter-group and intra-group total variation, the S-GTV scheme outperforms the conventional TV-based methods in terms of faster convergence rate and better sparse reconstruction performance. Analyses and simulations with a typical ECG recording system confirm that the proposed DACS front-end outperforms a conventional CS-based front-end using a random demodulator in terms of lower power consumption, higher recovery performance, and more system flexibility.

Published in:

IEEE Journal on Emerging and Selected Topics in Circuits and Systems  (Volume:2 ,  Issue: 3 )