By Topic

Combining Hopfield Neural Network and Contouring Methods to Enhance Super-Resolution Mapping

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Yuan-Fong Su ; Dept. of Bioenviron. Syst. Eng., Nat. Taiwan Univ., Taipei, Taiwan ; Foody, G.M. ; Muad, A.M. ; Ke-Sheng Cheng

The mixed pixel problem may be reduced through the use of a soft image classification and super-resolution mapping analyses. Here, the positive attributes of two popular super-resolution mapping methods, based on contouring and the Hopfield neural network, are combined. For a binary classification scenario, the method is based on fitting a contour of equal class membership to a pre-final output of a standard Hopfield neural network. Analyses of simulated and real image data sets show that the proposed method is more accurate than the standard contouring and Hopfield neural network based methods, with error typically reduced by a factor of two or more. The sensitivity of the Hopfield neural network based approaches to the setting of a gain function is also explored.

Published in:

Selected Topics in Applied Earth Observations and Remote Sensing, IEEE Journal of  (Volume:5 ,  Issue: 5 )