By Topic

The Deep Tensor Neural Network With Applications to Large Vocabulary Speech Recognition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Dong Yu ; Microsoft Res., Redmond, WA, USA ; Li Deng ; Seide, F.

The recently proposed context-dependent deep neural network hidden Markov models (CD-DNN-HMMs) have been proved highly promising for large vocabulary speech recognition. In this paper, we develop a more advanced type of DNN, which we call the deep tensor neural network (DTNN). The DTNN extends the conventional DNN by replacing one or more of its layers with a double-projection (DP) layer, in which each input vector is projected into two nonlinear subspaces, and a tensor layer, in which two subspace projections interact with each other and jointly predict the next layer in the deep architecture. In addition, we describe an approach to map the tensor layers to the conventional sigmoid layers so that the former can be treated and trained in a similar way to the latter. With this mapping we can consider a DTNN as the DNN augmented with DP layers so that not only the BP learning algorithm of DTNNs can be cleanly derived but also new types of DTNNs can be more easily developed. Evaluation on Switchboard tasks indicates that DTNNs can outperform the already high-performing DNNs with 4-5% and 3% relative word error reduction, respectively, using 30-hr and 309-hr training sets.

Published in:

Audio, Speech, and Language Processing, IEEE Transactions on  (Volume:21 ,  Issue: 2 )