Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

Low-power processor architecture exploration for online biomedical signal analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Dogan, A.Y. ; Embedded Syst. Lab. (ESL), EPFL, Lausanne, Switzerland ; Constantin, J. ; Atienza, D. ; Burg, A.
more authors

In this study, the authors explore sequential and parallel processing architectures, utilising a custom ultra-low-power (ULP) processing core, to extend the lifetime of health monitoring systems, where slow biosignal events and highly parallel computations exist. To this end, a single-and a multi-core architecture are proposed and compared. The single-core architecture is composed of one ULP processing core, an instruction memory (IM) and a data memory (DM), while the multi-core architecture consists of several ULP processing cores, individual IMs for each core, a shared DM and an interconnection crossbar between the cores and the DM. These architectures are compared with respect to power/performance trade-offs for different target workloads of online biomedical signal analysis, while exploiting near threshold computing. The results show that with respect to the single-core architecture, the multi-core solution consumes 62% less power for high computation requirements (167 MOps/s), while consuming 46% more power for extremely low computation needs when the power consumption is dominated by leakage. Additionally, the authors show that the proposed ULP processing core, using a simplified instruction set architecture (ISA), achieves energy savings of 54% compared to a reference microcontroller ISA (PIC24).

Published in:

Circuits, Devices & Systems, IET  (Volume:6 ,  Issue: 5 )