By Topic

Physics of power networks makes hard optimization problems easy to solve

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)

We have recently observed and justified that the optimal power flow (OPF) problem with a quadratic cost function may be solved in polynomial time for a large class of power networks, including IEEE benchmark systems. In this work, our previous result is extended to OPF with arbitrary convex cost functions and then a more rigorous theoretical foundation is provided accordingly. First, a necessary and sufficient condition is derived to guarantee the solvability of OPF in polynomial time through its Lagrangian dual. Since solving the dual of OPF is expensive for a large-scale network, a far more scalable algorithm is designed by utilizing the sparsity in the graph of a power network. The computational complexity of this algorithm is related to the number of cycles of the network. Furthermore, it is proved that due to the physics of a power network, the polynomial-time algorithm proposed here always solves every full AC OPF problem precisely or after two mild modifications.

Published in:

2012 IEEE Power and Energy Society General Meeting

Date of Conference:

22-26 July 2012