Cart (Loading....) | Create Account
Close category search window
 

Strain and defects in Si-doped (Al)GaN epitaxial layers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Forghani, Kamran ; Institute of Optoelectronics, Ulm University, Albert-Einstein-Allee 45, 89081 Ulm, Germany ; Schade, Lukas ; Schwarz, Ulrich T. ; Lipski, Frank
more authors

Your organization might have access to this article on the publisher's site. To check, click on this link:http://dx.doi.org/+10.1063/1.4761815 

Si is the most common dopant in (Al)GaN based devices acting as a donor. It has been observed that Si induces tensile strain in (Al)GaN films, which leads to an increasing tendency for cracking of such films with the increase of Si content and/or the increase of Al content. Based on x-ray investigations, the Si-doped films have a larger in-plane lattice constant than their undoped buffer layers, indicating involvement of a mechanism other than the change of lattice constants expected from an alloying effect. In this work, we present a model about Si dislocation interaction while debating other proposed models in the literature. According to our model, Si atoms are attracted to the strain dipole of edge-type dislocations in (Al)GaN films. It is expected that Si is more incorporated on that side of the dislocation, which is under compression leading to the formation of off-balanced dipoles with reduced compressive component. In response to such off-balanced dipoles—appearing as tensile dominant strain dipoles—the dislocation lines climb in order to accommodate the excess tensile strain. However, this dislocation climb mechanism is hindered by forces exerted by vacancies created due to the climb process. Accordingly, we have observed a lower strain level in our Si doped layers when they contain fewer dislocations. These findings were further supported by x-ray diffraction, transmission electron microscopy, and micro-photoluminescence investigations.

Published in:

Journal of Applied Physics  (Volume:112 ,  Issue: 9 )

Date of Publication:

Nov 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.