By Topic

Activity Recognition Using a Mixture of Vector Fields

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Nascimento, J.C. ; Inst. de Sist. e Robot., Inst. Super. Tecnico, Lisbon, Portugal ; Figueiredo, M.A.T. ; Marques, J.S.

The analysis of moving objects in image sequences (video) has been one of the major themes in computer vision. In this paper, we focus on video-surveillance tasks; more specifically, we consider pedestrian trajectories and propose modeling them through a small set of motion/vector fields together with a space-varying switching mechanism. Despite the diversity of motion patterns that can occur in a given scene, we show that it is often possible to find a relatively small number of typical behaviors, and model each of these behaviors by a “simple” motion field. We increase the expressiveness of the formulation by allowing the trajectories to switch from one motion field to another, in a space-dependent manner. We present an expectation-maximization algorithm to learn all the parameters of the model, and apply it to trajectory classification tasks. Experiments with both synthetic and real data support the claims about the performance of the proposed approach.

Published in:

Image Processing, IEEE Transactions on  (Volume:22 ,  Issue: 5 )