Cart (Loading....) | Create Account
Close category search window

Binary Compressed Imaging

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Bourquard, A. ; Biomed. Imaging Group, Ecole Polytech. Fed. de Lausanne, Lausanne, Switzerland ; Unser, M.

Compressed sensing can substantially reduce the number of samples required for conventional signal acquisition at the expense of an additional reconstruction procedure. It also provides robust reconstruction when using quantized measurements, including in the one-bit setting. In this paper, our goal is to design a framework for binary compressed sensing that is adapted to images. Accordingly, we propose an acquisition and reconstruction approach that complies with the high dimensionality of image data and that provides reconstructions of satisfactory visual quality. Our forward model describes data acquisition and follows physical principles. It entails a series of random convolutions performed optically followed by sampling and binary thresholding. The binary samples that are obtained can be either measured or ignored according to predefined functions. Based on these measurements, we then express our reconstruction problem as the minimization of a compound convex cost that enforces the consistency of the solution with the available binary data under total-variation regularization. Finally, we derive an efficient reconstruction algorithm relying on convex-optimization principles. We conduct several experiments on standard images and demonstrate the practical interest of our approach.

Published in:

Image Processing, IEEE Transactions on  (Volume:22 ,  Issue: 3 )

Date of Publication:

March 2013

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.