By Topic

Selection of Landmark Points on Nonlinear Manifolds for Spectral Unmixing Using Local Homogeneity

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Junhwa Chi ; School of Civil Engineering and the Laboratory for Applications of Remote Sensing, Purdue University, West Lafayette, USA ; Melba M. Crawford

Endmember extraction and unmixing methods that exploit nonlinearity in hyperspectral data are receiving increased attention, but they have significant challenges. Global feature extraction methods such as isometric feature mapping have significant computational overhead, which is often addressed for the classification problem via landmark-based methods. Because landmark approaches are approximation methods, experimental results are often highly variable. We propose a new robust landmark selection method for the purpose of pixel unmixing that exploits spectral and spatial homogeneity in a local window kernel. We compare the performance of the method to several landmark selection methods in terms of reconstruction error and processing time.

Published in:

IEEE Geoscience and Remote Sensing Letters  (Volume:10 ,  Issue: 4 )