By Topic

Wavelet Packet Analysis and Gray Model for Feature Extraction of Hyperspectral Data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Jihao Yin ; School of Astronautics, Beihang University, Beijing, China ; Chao Gao ; Xiuping Jia

Wavelet packet analysis (WPA) and gray model (GM) are investigated for nonlinear unsupervised feature extraction of hyperspectral remote sensing data in this letter. Treated as derivative series, a hyperspectral response curve of each pixel is decomposed into an approximation and various detailed compositions by WPA, and then, GM is continuously applied to find the relationship among those detailed compositions. Cluster-space representation is used for determining the optimal wavelet. New extracted features can reveal the intrinsic identities of hyperspectral data. Experimental results show the feasibility and reliability of our proposed method in terms of classification accuracy.

Published in:

IEEE Geoscience and Remote Sensing Letters  (Volume:10 ,  Issue: 4 )