By Topic

Analysis K-SVD: A Dictionary-Learning Algorithm for the Analysis Sparse Model

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Rubinstein, R. ; Comput. Sci. Dept., Technion - Israel Inst. of Technol., Haifa, Israel ; Peleg, T. ; Elad, M.

The synthesis-based sparse representation model for signals has drawn considerable interest in the past decade. Such a model assumes that the signal of interest can be decomposed as a linear combination of a few atoms from a given dictionary. In this paper we concentrate on an alternative, analysis-based model, where an analysis operator-hereafter referred to as the analysis dictionary-multiplies the signal, leading to a sparse outcome. Our goal is to learn the analysis dictionary from a set of examples. The approach taken is parallel and similar to the one adopted by the K-SVD algorithm that serves the corresponding problem in the synthesis model. We present the development of the algorithm steps: This includes tailored pursuit algorithms-the Backward Greedy and the Optimized Backward Greedy algorithms, and a penalty function that defines the objective for the dictionary update stage. We demonstrate the effectiveness of the proposed dictionary learning in several experiments, treating synthetic data and real images, and showing a successful and meaningful recovery of the analysis dictionary.

Published in:

Signal Processing, IEEE Transactions on  (Volume:61 ,  Issue: 3 )