By Topic

A Pressure Responsive Fluidic Microstrip Open Stub Resonator Using a Liquid Metal Alloy

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Khan, M.R. ; Dept. of Chem. & Biomed. Eng., North Carolina State Univ., Raleigh, NC, USA ; Hayes, G.J. ; Zhang, S. ; Dickey, M.D.
more authors

This letter describes a fluidic microstrip bandstop filter with transmission properties that change in discrete states. The filter consists of a liquid metal alloy - eutectic gallium indium (EGaIn) - as the conductive component in microfluidic channels. The fluidity of EGaIn allows the open stub resonator of the filter to change its length by flowing in response to an applied pressure. A series of posts in the channel defines the length of the stub filled by the metal and dictates the pressure needed for the liquid metal to flow and thereby extend the stub length. The frequency response of the filter changes in response to the changes in the length of the resonator stub. This approach is a simple method for creating tunable filters and impedance matching sections using soft materials that change dimensions in response to pressure.

Published in:

Microwave and Wireless Components Letters, IEEE  (Volume:22 ,  Issue: 11 )